Generalized Additive Model when Variables are not Normal and Associations are not Linear

Diana Šimić

CECIIS — Workshop on Data Analysis 28 September 2017

Workshop on Data Analysis

- What do you expect from a workshop? Information or Education?
- What is data analysis to you? Depends on who you are:
 - statistician
 - informatics professional
 - computer scientist
 - data scientist
 - economist
 - health professional ...

Statistician vs. Data Scientist

	Statistician	Data Scientist	
Goal	Explain or	Predict values	
	model variation		
Evaluation	Parsimony, fit,	Prediction errors	
	interpretation		
Generalization	Randomization	Cross-validation (Big Data)	
	(Experiment or Sample)		
Models	Base models on theory	Infer models from	
		data	

inspired by Bojana Dalbelo Bašić @ BIOSTAT 2017

Statistical Thinking 1

Model variation of "dependent variable" *y* using distribution function

$$y \sim F(y, \theta)$$

where $\theta = [\theta_1, \theta_2, ..., \theta_k]$

Explain variation in "dependent variable" y given predictors $x = [x_1, x_2, ..., x_p]$ as

$$y|x \sim F(y, \theta(x))$$

Statistical Thinking 2

- World is inherently stochastic (random).
- Given a good model and predictors we can significantly reduce "unexplained variation".
- Given data on a representative (random) sample we can reliably estimate parameters of the model so that model describes the target population well.
- ► Good models reflects "real" relationships in target population.

Data Science Thinking

- World is inherently deterministic.
- ► Given a good algorithm and predictors we can significantly reduce "prediction error".
- ► Given enough (big) data predictions will be accurate.
- ▶ We do not aim to draw inference on the nature of relationships in target population from DS algorithms. After all, if prediction errors become too large in the future, we will find a better algorithm.

From the point of view of positivistic epistemology . . . this is not science at all.

Statistical Modeling

Linear Regression

- One of the most popular statistical models
- Model variation in a numerical (dependent) variable given values of one (or more) "independent" variables (predictors)
- Usually introduced as the best line in the sense of minimum sum of squared errors

Is this good?

How about this?

A different angle

- ▶ Instead of asking: How to minimize sum of squared errors?
- ► Think: How to model variation in *y* given *x*?

Use an appropriate distribution function.

Some distribution functions

Distribution	Domain	Function	Expectation	Variance
Normal	$y\in\mathbb{R}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(y-\mu)^2}{2\sigma^2}}$	μ	σ^2
Uniform	$y \in [a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponential	$y \in [\alpha, \infty)$	$\frac{1}{\beta}e^{-\frac{y-\alpha}{\beta}}$	$\alpha + \beta$	eta^2
Poisson	$y\in\{0,1,\}$	$\frac{e^{-\lambda}\lambda^y}{y!}$	λ	λ
Binomial	$y \in \{0, 1,, n\}$	$\binom{n}{y} p^y (1-p)^{(n-y)}$	пр	np(1-p)

Back to linear regression 1

Data:

- Dependent variable (quantitative)
- ▶ One or more independent variables (quantitative or indicator)

Assumptions:

- Relationship between the dependent and independent variables is linear
- Residuals follow normal distribution
- Residuals are independent from prediction and any of the independent variables
- ▶ Residuals are homoscedastic (i.e. have constant variance)

Model:

 Conditional distribution of the dependent variable, given values of the independent variables is normal, with constant variance and mean that is a linear combination of independent variables.

Back to linear regression 2

Let $y = [y_1, y_2, \dots, y_n]^T$ be a column vector representing the dependent variable.

Let

$$X = \begin{bmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{bmatrix} = \begin{bmatrix} x_1^T \\ \vdots \\ x_n^T \end{bmatrix}$$

be a matrix with columns representing the independent variables, where the first column contains number 1 in all rows, and x_i^T represents the i-th row.

Let $b = [\beta_0, \beta_1, \dots, \beta_p]$ be a column vector of regression coefficients.

Linear regression model can be stated as:

$$y_i|x_i \sim N(x_i^T b, \sigma^2)$$
 or $y_i|x_i = \beta_0 + \sum_{i=1}^p x_i \beta_i + \epsilon_i$; $\epsilon_i \sim N(0, \sigma)$

From linear regression to general linear model

- Matrix X is usually called the design matrix.
- Independent variables can be qualitative. Such variables are represented by a set of indicator columns in the design matrix.
- Such a model includes:
 - ► Simple linear regression
 - Multiple linear regression
 - t-test
 - analisis of variance
 - analysis of covariance
 - **...**

What can go wrong?

Starting from the model:

$$y|x \sim N\left(x^T b, \sigma\right)$$

- 1. Conditional distribution of y given x might not be normal
- 2. Expectation of y given x might not be a linear combination of the elements of x
- 3. Variance might not be constant
- 4. Outliers may influence parameter estimates.

We can check these assumptions using diagnostic graphs.

Checking Assumptions: Normality

Residual qq-plot

Checking Assumptions: Linearity

Scatterplot with line of linear regression.

Checking Assumptions: Independence, homoscedasticity Residual scatterplot

Checking Assumptions: Outliers

Leverage plot

More examples: Normality

Residual qq-plot

More examples: Linearity

More examples: Independence, homoscedasticity

Residual scatterplot

More examples: Outliers

Leverage plot

When distribution is not normal . . .

Use model with a different distribution: generalized linear model

Instead of model

$$y|x \sim N\left(x^T b, \sigma\right)$$

use model

$$y|x \sim F(\theta)$$

and

$$E(y|x) = g^{-1}\left(x^{T}b\right)$$

where F is a distribution function from the exponential family, and g is a link function.

Exponential family

Distributions that can be written in the form

$$f(x|\theta) = A(x)B(\theta)e^{\eta(\theta)T(x)}$$

Notice that components that depend on the value of the variable and on the value of the parameter can be separated.

This family contains many distribution functions: normal, Poisson, beta, gamma, exponential, binomial and multinomial with fixed number of trials, negative binomial with fixed number of failures . . .

 $\eta(\theta)$ is called natural parameter.

Function η is a natural link function.

Logistic regression

- outcome is proportion of succeses for a known number of trials
- prediction is expected probability of successes given predictors (\hat{p})
- natural link function is logit:

$$\eta(p) = ln\left(rac{p}{1-p}
ight)$$

- quantity under the logarithm is called odds ratio
- ▶ log odds ratio is modeled as a linear combination of predictors

Poisson regression

- outcome is a number of events in a given time interval
- prediction is expected rate of succes given predictors $(\hat{\lambda})$
- natural link function is natural logarithm

$$\eta(\lambda) = \ln \lambda$$

log Poisson rate is modeled as a linear combination of predictors When association is not linear . . .

- transform independent variables (e.g. polinomial terms, logarithms, exponential function etc.)
- transform dependent variable (e.g. logarithm etc.)

These approaches are constrained to known functional forms . . .

use nonparametric smoother

Linear regression

Quadratic regression

Cubic regression

4th degree regression

What is a smoother

- function that sumarizes relationship between dependent and independent variable
- values of the function follow the trend, but exibit less variation than the dependent variable

How smoothers smooth?

- Take a "window" from the range of values of the independent variable
- ► Choose a summary function (e.g. mean, linear regression, weighted mean . . .)
- Move the window across the range of independent variable
- Prediction for the center of the window is the chosen summary function
- Result is a smooth curve
- Wider window -> smoother curve
- Narrower window -> more wrigly curve

Degree of smoothness

From linear to additive models

Instead of using a linear combination of independent variables:

$$b_0 + \sum_i x_i b_i$$

use sum of smooth functions:

$$\sum_i s_i(x_i)$$

Thus:

$$y|x \sim F(\theta)$$

and

$$E(y|x) = g^{-1}\left(\sum_i s_i(x_i)\right)$$

Association between mortality and air pollution

Daily data on:

- number of deaths in the city of Zagreb in 1995 to 1997
- meteorological conditions (minimum, average, maximum of daily temperature, relative humidity, air pressure)
- common epidemics (cases of influenza)
- ▶ air pollution (concentrations of NO_x, SO₂, black smoke)

Some associations . . .

require(psych)

Loading required package: psych

pairs.panels(ts.podaci[,c("tave", "apave", "no2", "tmall")], lwd=3)

Approach to the analysis

- Poisson regression (outcomes are counts)
- Decomposition of the time series into trend, seasonal, and residual components (additive)
- Model association with air pollution, meteorological and epidemiological data for current and previous days with trend and seasonal components as offset

Trend and seasonality

Building the model

Model summary

```
## Anova for Parametric Effects
                  Sum Sq Mean Sq F value Pr(>F)
##
               Df
## wday
               6
                  16.66 2.777 2.7687 0.011248 *
## s(dang)
               1 8.17 8.168 8.1426 0.004409 **
## s(rhmin)
               1 10.09 10.093 10.0611 0.001558 **
## s(tmax.11) 1 29.03 29.034 28.9438 9.187e-08 ***
## s(tmin.12) 1 42.04 42.044 41.9130 1.463e-10 ***
## s(rhmin.12) 1 7.60 7.596 7.5722 0.006030 **
## s(apmax.12) 1 0.14 0.145 0.1445 0.703897
## s(no2)
                    5.36 5.365 5.3481 0.020938 *
## Residuals 1049 1052.28 1.003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Model summary - continued

```
## Anova for Nonparametric Effects
             Npar Df Npar Chisq P(Chi)
##
## (Intercept)
## wday
## s(dang)
                      30.2234 1.239e-06 ***
## s(rhmin)
                  3 1.2769 0.734658
                  3 2.7809 0.426628
## s(tmax.11)
                  3 6.7324 0.080944 .
## s(tmin.12)
## s(rhmin.12)
                  3 9.8330 0.020045 *
## s(apmax.12)
                  3 11.4256 0.009635 **
## s(no2)
                      4.1430 0.246444
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Mortality vs. NO2 - partial effect

Mortality vs. relative humidity

Mortality vs. day of influenza epidemic

Interpretation of results

- Regression coefficient in Poisson regression is a logarithm of the relative risk
- Exponential function will transform a coefficient into relative risk
- Range of effects in our model is ca. 0.4
- ▶ That transforms into relative risk of 1.4918247.

Conclusions

- Statistical models enable capturing shape of data distributions.
- Contemporary statistics provides a wide range of statistical models that can deal with:
 - Non-normality (generalized models)
 - Non-linearity (additive models)
- ▶ It is also possible to take into account dependence among observations (with mixed models) etc.
- Generalized additive (mixed) models provide a versatile tool for modeling wide range of outcomes that do not meet requirements of a linear model.

Questions?

Thank You!