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Workshop on Data Analysis

» What do you expect from a workshop?
Information or Education?

» What is data analysis to you?
Depends on who you are:

>
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statistician

informatics professional
computer scientist
data scientist
economist

health professional ...



Statistician vs. Data Scientist

\ Statistician \ Data Scientist

Goal Explain or Predict values
model variation

Evaluation Parsimony, fit, Prediction errors
interpretation

Generalization | Randomization Cross-validation
(Experiment or Sample) | (Big Data)

Models Base models on theory Infer models from

data

inspired by Bojana Dalbelo Basi¢ @ BIOSTAT 2017



Statistical Thinking 1

Model variation of “dependent variable” y using distribution
function

y ~ F(y,0)

where 0 = [61, 02, ..., 0k]

Explain variation in “dependent variable” y given predictors
X = [x1, X2, ..., Xp| as

ylx ~ F(y,0(x))



Statistical Thinking 2

» World is inherently stochastic (random).

» Given a good model and predictors we can significantly reduce
“unexplained variation”.

» Given data on a representative (random) sample we can reliably
estimate parameters of the model so that model describes the
target population well.

» Good models reflects “real” relationships in target population.



Data Science Thinking

» World is inherently deterministic.

» Given a good algorithm and predictors we can significantly
reduce “prediction error”.

» Given enough (big) data predictions will be accurate.

» We do not aim to draw inference on the nature of relationships
in target population from DS algorithms. After all, if prediction
errors become too large in the future, we will find a better
algorithm.

From the point of view of positivistic epistemology ... this is not
science at all.



Statistical Modeling



Linear Regression

» One of the most popular statistical models

» Model variation in a numerical (dependent) variable given
values of one (or more) “independent” variables (predictors)

» Usually introduced as the best line in the sense of minimum
sum of squared errors



Is this good?
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How about this?
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A different angle

> Instead of asking: How to minimize sum of squared errors?
» Think: How to model variation in y given x?

Use an appropriate distribution function.



Some distribution functions

Distribution Domain Function Expectation ~ Variance
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Back to linear regression 1
Data:

» Dependent variable (quantitative)
» One or more independent variables (quantitative or indicator)

Assumptions:

» Relationship between the dependent and independent variables
is linear

» Residuals follow normal distribution

» Residuals are independent from prediction and any of the
independent variables

» Residuals are homoscedastic (i.e. have constant variance)

Model:

» Conditional distribution of the dependent variable, given values
of the independent variables is normal, with constant variance
and mean that is a linear combination of independent variables.



Back to linear regression 2

Let y = [y1,¥2,...,¥n] " be a column vector representing the
dependent variable.

Let +
1 x11 ... xip Xq

X=|: : =]
T

1 Xp1 .. Xpp X,

be a matrix with columns representing the independent variables,
where the first column contains number 1 in all rows, and x,-T
represents the i-th row.

Let b = [Bo, f1,- - -, Bp) be a column vector of regression
coefficients.

Linear regression model can be stated as:

p
yilxi ~ N(Xin,O'Z) or yilxi= o+ ijﬁj + €€ ~ N(0,0)
=1



From linear regression to general linear model

» Matrix X is usually called the design matrix.

» Independent variables can be qualitative. Such variables are
represented by a set of indicator columns in the design matrix.
» Such a model includes:
» Simple linear regression
Multiple linear regression
t-test
analisis of variance
analysis of covariance
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What can go wrong?

Starting from the model:
ylx ~ N (be, a)

1. Conditional distribution of y given x might not be normal
2. Expectation of y given x might not be a linear combination of
the elements of x

3. Variance might not be constant
4. Qutliers may influence parameter estimates.

We can check these assumptions using diagnostic graphs.



Checking Assumptions: Normality

Residual qg-plot

Standardized residuals
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Checking Assumptions: Linearity

Scatterplot with line of linear regression.
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Checking Assumptions: Independence, homoscedasticity

Residual scatterplot

Residuals
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Checking Assumptions: Outliers

Leverage plot

Residuals vs Leverage Residuals vs Leverage
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More examples: Normality

Residual qg-plot

Standardized residuals
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More examples: Linearity
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More examples: Independence, homoscedasticity

Residual scatterplot

Residuals vs Fitted Residuals vs Fitted
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More examples: Outliers

Leverage plot

Standardized residuals
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When distribution is not normal ...

Use model with a different distribution: generalized linear model
Instead of model
ylx ~ N (XTb, 0)

use model
ylx ~ F(0)

and
E(ylx) =g " (x7b)

where F is a distribution function from the exponential family, and
g is a link function.



Exponential family

Distributions that can be written in the form

f(x]0) = A(X)B(e)en(ﬁ)T(x)

Notice that components that depend on the value of the variable
and on the value of the parameter can be separated.

This family contains many distribution functions: normal, Poisson,
beta, gamma, exponential, binomial and multinomial with fixed
number of trials, negative binomial with fixed number of failures ...

1(@) is called natural parameter.

Function 7 is a natural link function.



Logistic regression

v

outcome is proportion of succeses for a known number of trials
prediction is expected probability of successes given predictors

(h)

natural link function is logit:

n(p) = In <1fp>

quantity under the logarithm is called odds ratio
log odds ratio is modeled as a linear combination of predictors

v

v

vy



Poisson regression

v

outcome is a number of events in a given time interval

~

prediction is expected rate of succes given predictors (A)
natural link function is natural logarithm

vy

n(\) = In

v

log Poisson rate is modeled as a linear combination of
predictors



When association is not linear . ..

» transform independent variables (e.g. polinomial terms,
logarithms, exponential function etc.)
» transform dependent variable (e.g. logarithm etc.)

These approaches are constrained to known functional forms . ..

> use nonparametric smoother



Linear regression

pom <- 1lm(y ~ x)

plot(x,y, pch=15)

lines(x[order(x)], pom$fitted.values[order(x)],
1lwd=2, col="red")




Quadratic regression

x2 <- (x - mean(x))"2

pom <- 1lm(y ~ x + x2)

plot(x,y, pch=15)

lines(x[order(x)], pom$fitted.values[order(x)],
lwd=2, col="red")




Cubic regression

x3 <- (x - mean(x))"3

pom <- 1m(y ~ x + x2 + x3)

plot(x,y, pch=15)

lines(x[order(x)], pom$fitted.values[order(x)],
lwd=2, col="red")




4th degree regression

x4 <- (x - mean(x))"4

pom <- 1m(y ~ x + x2 + x3 + x4)

plot(x,y, pch=15)

lines(x[order(x)], pom$fitted.values[order(x)],
lwd=2, col="red")




What is a smoother

» function that sumarizes relationship between dependent and
independent variable

» values of the function follow the trend, but exibit less variation
than the dependent variable




How smoothers smooth?

» Take a "window"” from the range of values of the independent
variable

» Choose a summary function (e.g. mean, linear regression,
weighted mean .. .)

» Move the window across the range of independent variable

» Prediction for the center of the window is the chosen summary
function

» Result is a smooth curve
» Wider window -> smoother curve

» Narrower window -> more wrigly curve



Degree of smoothness

poml <- loess(y~x, span=0.1)

pom2 <- loess(y~x, span=0.2)

pom3 <- loess(y~x, span=0.9)

plot(x,y, pch=15)

lines(x[order(x)], pomi$fitted[order(x)],
1lwd=2, col="red")

lines(x[order(x)], pom2$fitted[order(x)],
lwd=2, col="green")

lines(x[order(x)], pom3$fitted[order(x)],
1wd=2, col="blue")




From linear to additive models

Instead of using a linear combination of independent variables:

bo + Z X,'b,'
i
use sum of smooth functions:

Z S,'(X,')

Thus:
ylx ~ F(0)

and

E(ylx)=g " (Z Si(Xi)>

i



Association between mortality and air pollution

Daily data on:

» number of deaths in the city of Zagreb in 1995 to 1997
meteorological conditions (minimum, average, maximum of
daily temperature, relative humidity, air pressure)

» common epidemics (cases of influenza)

» air pollution (concentrations of NO,, SO», black smoke)
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Some associations . ..
require (psych)

## Loading required package: psych

pairs.panels(ts.podacil[,c("tave", "apave", "no2", "tmall")], lwd=3)
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Approach to the analysis

» Poisson regression (outcomes are counts)

» Decomposition of the time series into trend, seasonal, and
residual components (additive)

» Model association with air pollution, meteorological and
epidemiological data for current and previous days with trend
and seasonal components as offset



Trend and seasonality
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Building the model

require (gam)
tmall.model<-gam(tmall ~ wday + s(dang) + s(rhmin) + s(tmax.l1l) +
s(tmin.12) + s(rhmin.12) + s(apmax.12) + s(no2),
offset=log(trend+season),
data=ts.podaci,
family=poisson(log))



Model summary

##
##
##
#i#
##
##
##
##
##
##
##
##
##

Anova for Parametric Effects
Sq Mean Sq F value

Df Sum
wday 6 16.
s(dang) 1
s (rhmin) 1 10.
s(tmax.11) 1 29.
s(tmin.12) 1 42.
s(rhmin.12) 1
s(apmax.12) 1
s(no2) 1
Residuals 1049 1052.
Signif. codes: 0 '¥xx' 0.

8.

7.
0.
5.

66
17
09
03
04
60
14
36
28

2.

8.
10.
29.
42,
.596
.145
.365
.003

= oo N

T
168
093
034
044

2.

8.
10.
28.
41.
.5722
.1445
.3481

o O N

001 'xx'

7687
1426
0611
9438
9130

0.01

Pr(>F)
0.011248
0.004409
0.001558

9.187e-08
1.463e-10
0.006030
0.703897
0.020938

'x' 0.05 '.

*%
k%
koK k
kK%
k%

' 0.1

1



Model summary - continued

##
##
##
#i#
##
##
##
##
##
##
##
##
##

Anova for Nonparametric Effects

Npar Df Npar Chisq P(Chi)
(Intercept)
wday
s(dang) 3 30.2234 1.239e-06 *x**
s(rhmin) 3 1.2769 0.734658
s(tmax.11) 3 2.7809 0.426628
s(tmin.12) 3 6.7324 0.080944 .
s(rhmin.12) 3 9.8330 0.020045 *
s (apmax.12) 3 11.4256 0.009635 *x*
s(no2) 3 4.1430 0.246444
Signif. codes: O '#xx' 0.001 'x*x' 0.01 'x'

0.05 '.

' 0.1

1



Mortality vs. NO2 - partial effect
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Mortality vs. relative humidity
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Mortality vs. day of influenza epidemic
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Interpretation of results

» Regression coefficient in Poisson regression is a logarithm of
the relative risk

» Exponential function will transform a coefficient into relative
risk

> Range of effects in our model is ca. 0.4

» That transforms into relative risk of 1.4918247.



Conclusions

» Statistical models enable capturing shape of data distributions.
» Contemporary statistics provides a wide range of statistical
models that can deal with:
» Non-normality (generalized models)
» Non-linearity (additive models)
> It is also possible to take into account dependence among
observations (with mixed models) etc.

» Generalized additive (mixed) models provide a versatile tool for
modeling wide range of outcomes that do not meet
requirements of a linear model.



Questions?

Thank You!



